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Abstract

An R package which uses permutation tests to obtain p-values for linear models.

Standard R linear model functions have been modi�ed to produce p-values obtained

from permutation tests instead of from normal theory. These values are advanta-

geous when the degrees of freedom for error is small or non-existent, as is the case

with saturated experimental designs, or when the data is drawn from a non-normal

population, or when there are apparent outliers. The package also supports ANOVA

for polynomial models such as those used for response surfaces.
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1 Introduction

Permutations are fundamental to statistical inference. Consider a simple experiment in
which three levels of potash are applied to plots and the numbers of lettuce plants that
emerge are tallied, as in Table 1.

Table 1: Lettuce growth experiment

Potash level 1 2 3
No. Plants 449 413 326 409 358 291 341 278 312

There seems to be a downward trend in the data with increasing levels of potash:
but is it real? The conventional way of deciding this nowadays would be to assume the
observations are normally distributed and drawn from an in�nite population of possible
replications of this experiment. The �rst assumption cannot be checked, and the second
requires a good deal of fancy, which doesn't seem to bother modern researchers very
much; possibly because they have become used to it. Any assumption that involves
in�nity requires careful thought, since it is quite outside ordinary experience.

In any case, all that is available is this set of 9 observations. If there is a trend, then
one measure of it is the slope of a line �tted through the data. This is given by subtracting
the average of the level 3 observations from the average of the level 1 observations and
dividing by 2: it is abut 43. The null hypothesis is that the level of potash does not e�ect
plant growth, which means that the observed value of 43 is due to chance. If it is due
to chance, then there is no connection between the values in Table 1 and the plots from
which they come. In other words the �rst value, 449, could as easily have come from some
other plot, and so too for the other values: none of them are tied to the plots shown.
That being the case, it is reasonable to ask how frequently chance would create a slope
of 43 or greater. If 43 is quite common, then it seems unlikely that the trend is real. If
on the other hand, a slope of 43 or larger is rare, then the null hypothesis is suspect.

One can in fact estimate this chance, by permuting the observations in Table 1, and
tallying the number of times a slope equal to or greater than 43 is obtained. This value
is a well de�ned probability, in the same sense that the probability of snake eyes from a
pair of fair dice is 1/36. It turns out that the probability that a slope will be equal to or
greater than 43 is 0.03912, making it a rare event in most peoples view; and leading to
the conclusion that potash decreases fertility for this planting3.

The rub, of course, is that the conclusion cannot be generalized to the e�ects of potash
on lettuce plants without further assumptions. It is a perfectly correct conclusion for these
particular plants, and it seems reasonable that it should apply to other plantings, which
cries out for a replication of the experiment. If the same conclusion is reached from a
number of replicated experiments under a variety of conditions, then one would have

1This is a one tailed test, and the corresponding F-test probability is 0.048.
2In addition, the randomization is over all 9! = 362880 permutations, instead of over the 1680 combi-

nations obtainable by switching observations only between di�erent levels.
3This conclusion is only valid if the hypothesis is posed before the data is observed: the calculations

are meaningless if a salient feature of the data is taken as a hypothesis after the fact.
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reason to believe it in general. Replication requires care. For example, there may be
other factors that in�uence fertility which should be taken into account, such as the soil
gradient or the unequal exposure to sunlight, and repeat experiments might well show
signi�cant results due to inattention to these factors in the absence of a genuine trend.

Fechner [1860] ran up against such di�culties in establishing a just-noticeable di�er-
ence for sensory measurement. He presented boxes with various weights to his subjects
and recorded the point at which they were unable to make a judgment. He found it
necessary to control for many extraneous factors such as the order of presentation and
the hand that was used. It took many trials and considerable care to obtain his results.

Peirce and Jastrow [1884] repeated Fechner's work, but had a wonderful idea: instead
of controlling the many factors, Peirce used a randomizing device which avoided many
of the di�culties that Fechner had encountered. Any factor that might in�uence the
results of the weighings could be expected to line up with the e�ect under investigation
only by chance, making the results perhaps more variable, but more nearly correct. The
just-noticeable di�erence of Fechner, thus became the point at which the probabilities of
right and wrong judgments were equal.

Moreover, Peirce realized that this device enabled generalizations to be made:

"The truth is that induction is reasoning from a sample taken at random to
the whole lot sampled. A sample is a random one, provided it is drawn by such
machinery, arti�cial or physiological, that in the long run any one individual
of the whole lot would get taken as often as any other.� [Peirce and Jastrow,
1884, p217].

This device of randomization was adopted by Fisher [1935] as a way to generalize
the results from a particular experiment4. Fisher [1925-1952] then invented the idea
of a permutation test, and provided justi�cation for its use. Because of the computa-
tional di�culties, approximations such as the chi-squared distribution were used, and
over time these approximations have replaced permutations as the preferred methodol-
ogy: see [Fisher, 1935, p55]. What is now called the F distribution, in fact, was originally
devised as an approximation for the permutation distribution of the variance ratio � see
[Kempthorne, 1952, section 7.4]. Computers now make it possible to consider a direct use
of permutation tests.

Thus permutation tests applied to suitably randomized experimental units o�er a valid
method of induction. The randomization is essential. The use of statistical tests, and in
particular, the use of permutation tests for non-randomized units changes the inferences
that are possible from the general to the particular. In other words the inferences are
proper only for the units involved.

Sche�é [1959] has given a concise de�nition of permutation tests:

�Permutation tests for a hypothesis exist whenever the joint distribution of
the observations under the hypothesis has a certain kind of symmetry, namely,

4He must surely have been aware of Peirce's work, although he did not cite it.
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when there exists a set of permutations of the observations which leave the
distribution the same (the distributions is invariant under a group of permu-
tations).�

In other words, it must be possible under the hypothesis to �exchange� the observa-
tions, which occurs for linear models when the hypothesis is the usual null hypothesis and
when the units have been selected at random from some speci�c population. If the null is
true, then the observed sum of squares, SS, has the same distribution for all permutations
of the observations, and a tally of the number of values of the SS which exceed that for
the original ordering of the observations forms a critical region for the permutation test.
The size of this region on a proportion scale is the p-value of the permutation test.

There is always the question of choosing the permutation group. For a single variable,
one of course permutes all observations. For two variables in a table, one may permute each
row independently of the row totals, but what about permuting all variables regardless of
their row? An even more di�cult decision is what to do about interactions. [Edgington,
1995, p133] argues for a very restricted de�nition which excludes may e�ects that are
usually of interest to experimenters. The fact is, however, that all estimates are linear
functions of the observations, as is discussed in Section 4.2, and the coe�cients of these
functionals depend only on the design. Each coe�cient estimate is a function of all the
observations, and thus permutation over observations is meaningful. An exception occurs
when blocks need to be considered, since the linear functionals for such analyses are
de�ned only over a subset of the observations: R deals with this by projecting the design
and the observations into spaces orthogonal to the blocks, and permutation analyses seems
to work well on these projections.

Of course, permutation tests do not assume a particular distribution and are more
powerful in many cases such as for a mixture of distributions or distributions which
depart substantially from the normal distribution, or when there are outliers. Simulations
illustrating this are shown in Section 3.3

Permutation tests are clearly the method of choice for those vexing cases where there
are no degrees of freedom for error such as for saturated experimental designs, as is
illustrated in Section 2.6.

In those cases where the normal theory assumptions are adequately approximated,
permutation tests are indistinguishable from the usual F-tests. Section 3.2 shows simu-
lations illustrating this. In those cases where the p-values from permutation tests di�er
substantially from those for F-tests, a careful examination of the data is usually worth-
while.

2 Examples

This section illustrates the several functions in the lmPerm package with a dataset from
[Cochran and Cox, 1957, p164].

The dataset is shown in Table(2) is a 3x3 factorial with 9 observations. The y values
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are numbers of lettuce plants emerging, averaged over 12 plots. The factors are 3 levels
of nitrogen, N, and 3 levels of potash, P. (The Block factor is not part of Cochran and
Cox's data set: it will be used for a later illustration.) There are no degrees of freedom
for error.

Cochran and Cox analyzed this data with an external estimate of the residual standard
error. Their analysis indicated that both linear e�ects were signi�cant.

Table 2: CC164, A 3x3 factorial

y P N Block
1 449 1 1 0
2 413 1 2 2
3 326 1 3 1
4 409 2 1 1
5 358 2 2 0
6 291 2 3 2
7 341 3 1 2
8 278 3 2 1
9 312 3 3 0

2.1 lmp() exact

The appropriate R function for an analysis of such a data set is lm(), but although it
will estimate the coe�cients of the linear model, it will not produce p-values because of
the lack of an error estimate. The modi�ed function is lmp(), and its output is shown
in Table(3). As may be seen, the linear e�ects are not quite signi�cant at the 5% level5.
This suggests that Cochran and Cox's historical value may have been a tad small. Since
there are no residuals the permutation criterion is the unscaled sum of squares, which
does not provide as powerful an analysis as the scaled sum of squares as noted in Section
3.2.

The call for this analysis is

summary(lmp(y~P*N,data=CC164, perm="Exact"))

as indicated at the top of Table(3), which di�ers only in the perm parameter from the
call that would be made to lm(). The "Exact"6 argument to perm causes all 9!=362,880
permutations to be evaluated. The computer response time is not noticeably longer than
for lm(), which is not the case for larger data sets. In fact 12 or so observations is near
the limit of my patience at 3 minutes, while 14 is an overnighter. Is it any wonder, with
computation times like these, that permutations are seldomly used? Before computers,
only the simplest permutation calculations were possible, and although things are better
nowadays, permutations are still only possible for small data sets. The statistical problems
were resolved by the use of t and F distributions as approximations.

5This is a two tailed test, as are the tests in lmp() and aovp().
6The "Exact" argument is redundant here, since it is the default.
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Table 3: Exact permutation analysis of lettuce data

[1] "Settings: unique SS "

Call:

lmp(formula = y ~ P * N, data = CC164, perm = "Exact")

Residuals:

ALL 9 residuals are 0: no residual degrees of freedom!

Coefficients:

Estimate Pr(Exact)

P.L -60.575 0.0786 .

P.Q 0.408 1.0000

N.L -63.640 0.0643 .

N.Q 4.082 0.8929

P.L:N.L 47.000 0.4656

P.Q:N.L 24.249 0.7075

P.L:N.Q 42.724 0.5052

P.Q:N.Q 13.000 0.8524

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: NaN on 0 degrees of freedom

Multiple R-Squared: 1, Adjusted R-squared: NaN

F-statistic: NaN on 8 and 0 DF, p-value: NA

2.2 lmp() Prob

The alternative to evaluating all permutations is to sample from the possible permutations
and to use estimates of p-values. Two methods for doing this are in the present package.
The �rst uses a criterion suggested by Anscombe [1953] which stops the sampling when
the estimated standard deviation of the p-value falls below some fraction of the estimated
p-value. The second uses the sequential probability ratio of Wald [1947] to decide between
two hypotheses about a p-value. There are of course other stopping rules.

Anscombe's method is controlled by setting perm to "Prob". Thus one has the results
shown in Table(4).
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Table 4: Estimated permutation analysis of lettuce data

[1] "Settings: unique SS "

Call:

lmp(formula = y ~ P * N, data = CC164, perm = "Prob")

Residuals:

ALL 9 residuals are 0: no residual degrees of freedom!

Coefficients:

Estimate Iter Pr(Prob)

P.L -60.5755 822 0.1095

P.Q 0.4082 51 1.0000

N.L -63.6396 2265 0.0424 *

N.Q 4.0825 51 1.0000

P.L:N.L 47.0000 192 0.3438

P.Q:N.L 24.2487 51 0.7059

P.L:N.Q 42.7239 132 0.4318

P.Q:N.Q 13.0000 51 0.9020

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: NaN on 0 degrees of freedom

Multiple R-Squared: 1, Adjusted R-squared: NaN

F-statistic: NaN on 8 and 0 DF, p-value: NA
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Note that Pr(Exact) has changed to Pr(Prob). There is good agreement between the
p-values in the two tables, but sampling being what it is, one must not expect certainty.
The stopping rule is controlled by a parameter Ca which has a default value of 0.1. That is
the sampling stops when the estimated standard deviation falls below 0.1 of the estimated
p-value.

The Iter column reports the number of iterations (the sample size) required to meet
the stopping rule � the minimum is set to 50. The number of iterations is a very small
fraction of the 9! possible permutations, so small in fact that had previous generations
of statisticians explored this possibility they may well have used permutations more fre-
quently. One only has to recall the still unequaled tables produced by Pearson [1933,1956]
to realize that extensive computation was no hindrance to their e�orts. Indeed groups of
�computers� with mechanical calculators were employed in massive routine calculations,
such as inverting matrices, up through the 1960's, when punched card calculators and the
�rst computers became available.

2.3 lmp() SPR

Permutation calculations were �rst used to assess signi�cance and their justi�cation was
as randomization tests Fisher [1935], that is tests which derive their validity from the
randomization of the experimental data. They are not well suited to decision theory, and
yet decisions theory can be used to assess p-values. If one chooses two hypotheses about
the p-values, then one can use a sequential probability ratio test Wald [1947] to decide on
when to stop the sampling. Table(5) illustrates this. It was obtained by setting the perm
parameter to "SPR". Acceptance of the null hypotheses is shown by 1's in the Accept

column7.

2.4 lmp() ANOVA

Analysis of variance tables may be produced. For ��at� data, one can use the call

anova(lmp(y~P*N,data=CC164))

with the result shown in Table(6).

2.5 aovp() Multistratum analyses

One may perform a multistratum analyses with a call to aovp() as shown in Table(7).
The call was

summary(aovp(y~P*N+Error(Block),CC164)).

7For this illustration, the size of the acceptance region was set to 0.07 instead of the default 0.05, to

insure that a 1 would appear in the Accept column.
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Table 5: SPR permutation analysis of lettuce data

Call:

lmp(formula = y ~ P * N, data = CC164, perm = "SPR", p0 = 0.07,

p1 = 0.08)

Residuals:

ALL 9 residuals are 0: no residual degrees of freedom!

Coefficients:

Estimate Iter Pr(SPR) Accept

P.L -60.57548 4206.00000 0.08250 0

P.Q 0.40825 35.00000 1.00000 0

N.L -63.63961 1681.00000 0.05592 1

N.Q 4.08248 47.00000 0.76596 0

P.L:N.L 47.00000 126.00000 0.33333 0

P.Q:N.L 24.24871 40.00000 0.87500 0

P.L:N.Q 42.72392 78.00000 0.48718 0

P.Q:N.Q 13.00000 35.00000 1.00000 0

Residual standard error: NaN on 0 degrees of freedom

Multiple R-Squared: 1, Adjusted R-squared: NaN

F-statistic: NaN on 8 and 0 DF, p-value: NA

Table 6: Anova permutation analysis of lettuce data

[1] "Settings: unique SS "

Analysis of Variance Table

Response: y

Df R Sum Sq R Mean Sq Pr(Exact)

P 2 11008.7 5504.3 0.2214

N 2 12200.0 6100.0 0.1893

P:N 4 4791.3 1197.8 0.8913

Residuals 0 0.0 NaN
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The Block variable is �ctitious, and is introduced just for this illustration. It has no
meaning for the experiment.

The probability for the block stratum is unity, since the test is for a pooling of all
components; and in any case there are only two degrees of freedom to permute.

An example with 7 blocks and 6 treatments taken from [Hald, 1952, Table 17.4], may
be used to illustrate this point. An analysis similar to that of 7 is shown in Table 8.

The data seems to show a linear trend in the block means, so an additional variable,
L was created as a linear contrast among blocks. The analysis is shown in Table 9, where
it may be seen that there is a statistically signi�cant linear trend.

2.6 Saturated designs

Saturated designs are experimental designs with no degrees of freedom for error, such as
the main e�ect plans of Plackett and Burman [1946]. They are usually two level designs
such as that shown in Table 10. This particular design and its analysis was discussed by
Box [1988] in his critique of Taguchi metods.

Since there are no degrees of freedom for error in such designs, various techniques are
used. The usual technique is to leave some of the factors unassigned, and use the pooled
estimates from these to estimate error. Simulations show that a sharp bend in the power
curve at 5 degrees of freedom which means that only only needs a few unassigned factors
when using such designs.

In this case the original author assigned all factors, and chose to pool the smaller
e�ect estimates for an estimate of error. This obviously biased the error estimate and
produced several spurious e�ects as pointed out by Box [1988]. He analyzed the data
using half-normal plots, and found only two signi�cant e�ects, "E" and "G". Table 11
shows the lmp() analysis using permutations: it agrees with Box's analysis, as it should.
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Table 7: Multistratum Anova permutation analysis of lettuce data

[1] "Settings: unique SS "

Error: Block

Component 1 :

Df R Sum Sq R Mean Sq Pr(Exact)

P:N 2 1970.7 985.33 1

Error: Within

Component 1 :

Df R Sum Sq R Mean Sq Pr(Exact)

P 2 11008.7 5504.3 0.64167

N 2 12200.0 6100.0 0.08611 .

P:N 2 2820.7 1410.3 0.81944

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Table 8: Anova with a block stratum

> summary(aovp(Y~T+Error(block),Hald17.4))

[1] "Settings: unique SS "

Error: block

Component 1 :

Df R Sum Sq R Mean Sq

Residuals 6 1483.2 247.2

Error: Within

Component 1 :

Df R Sum Sq R Mean Sq Iter Pr(Prob)

T 4 137.54 34.386 5000 0.0134 *

Residuals 24 236.60 9.858

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Table 9: Anova with a block stratum and a linear contrast among blocks

[1] "Settings: unique SS "

Error: block

Component 1 :

Df R Sum Sq R Mean Sq Pr(Exact)

L 1 1331.8 1331.79 0.001389 **

Residuals 5 151.4 30.28

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: Within

Component 1 :

Df R Sum Sq R Mean Sq Iter Pr(Prob)

T 4 137.54 34.386 5000 0.0206 *

Residuals 24 236.60 9.858

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Table 10: Saturated experimental design with response SN

H D L B J F N A I E M C K G O SN

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 6.2626

1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 4.8024

-1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 21.0375

1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 15.1074

-1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 14.0285

1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 16.6857

-1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 12.9115

1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 15.0446

-1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 17.6700

1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 17.2700

-1 1 1 -1 -1 1 1 1 1 -1 -1 1 1 -1 -1 6.8183

1 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 5.4325

-1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 15.2724

1 -1 1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 11.1976

-1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 9.2436

1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 4.6836
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Table 11: lmp() analysis of a saturated design.

[1] "Settings: unique SS "

Call:

lmp(formula = SN ~ ., data = Quinlan)

Residuals:

ALL 16 residuals are 0: no residual degrees of freedom!

Coefficients:

Estimate Iter Pr(Prob)

H1 0.8138 95 0.5158

D1 0.8069 51 0.7255

L1 -0.4041 75 0.5733

B1 -0.2917 51 0.9216

J1 0.3332 51 0.9608

F1 -1.1057 205 0.3317

N1 -0.2779 51 0.8039

A1 1.1433 127 0.4409

I1 -0.4888 51 0.6667

E1 -3.5971 5000 0.0054 **

M1 -0.2202 51 0.7843

C1 -1.1409 99 0.5051

K1 1.1894 206 0.3301

G1 -2.3740 1236 0.0752 .

O1 -0.2153 51 0.8039

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: NaN on 0 degrees of freedom

Multiple R-Squared: 1, Adjusted R-squared: NaN

F-statistic: NaN on 15 and 0 DF, p-value: NA
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2.7 Over�tting

The response in some �experiments� is almost error free with the �uctuations due only to
the slight variations in the measuring process. An analysis assuming normal errors can be
misleading in such cases. The problem is more common in industrial settings than it is for
sociological or biological work. For example some data cited by [Faraway, 2005, page 190]
involved measurements on thermoplastic composite strength subjected to several levels
of laser power and tape speed. There were no replicate measurements and the design is
saturated if an interaction is included. Table 12 shows a permutation analysis, and it may
be seen from the mean squares that an analysis using F-tests, with the interaction as the
error term, would show both factors to be signi�cant. It is more likely that the data is
almost without error, and the permutation results are the correct ones.

2.8 Polynomial Models

Models for response surfaces use polynomial models such as

E(Y ) = β0 +
∑
i

βixi +
∑
ij

βijxixj,

where the {xi} are numerical variables.

R has little support for such models. In particular, it is not possible to perform an
ANOVA with them: each column of the incidence matrix is treated independently, and
there is no way to pool them into sources, even though the several columns involving the
same variable may represent vectors spanning a space.

lmPerm collects together the appropriate terms in response surface models and pro-
duces a correct ANOVA table. For e�cient experimental designs, such an analysis will
be meaningful, especially if the variables are centered. Table 13 illustrates this. The �rst
two variables, A and B, are numeric, and the third, C, is a factor.

The function poly.formula() enables a few special functions, such as quad() to be
included in the formula. The following special functions are available.

> poly.formula(Y~quad(A,B,C))

Y ~ (A + B + C)^2 + I(A^2) + I(B^2) + I(C^2)

> poly.formula(Y~cubic(A,B,C))

Y ~ (A + B + C)^3 + I(A^2) + I(B^2) + I(C^2) + I(A^3) + I(B^3) +

I(C^3)

> poly.formula(Y~cubicS(A,B,C))

Y ~ (A + B + C)^3 + I(A * B * (A - B)) + I(A * C * (A - C)) +

I(B * C * (B - C))
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Table 12: Permutation analysis of tape composite data

> data(composite)

> anova(lmp(strength~laser*tape,composite))

[1] "Settings: unique SS "

Analysis of Variance Table

Response: strength

Df R Sum Sq R Mean Sq Pr(Exact)

laser 2 224.184 112.092 0.003571 **

tape 2 48.919 24.459 0.557143

laser:tape 4 10.503 2.626 0.990079

Residuals 0 0.000 NaN

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Table 13: Polynomial model in two variables and a factor

> anova(lmp(poly.formula(Y~quad(A,B)+C),simDesignPartNumeric))

[1] "Settings: unique SS : numeric variables centered"

Analysis of Variance Table

Response: Y

Df R Sum Sq R Mean Sq Iter Pr(Prob)

A 2 2391.02 1195.51 5000 0.0190 *

B 2 459.41 229.70 381 0.2598

A:B 1 77.80 77.80 99 0.5051

C 2 111.67 55.84 98 0.6224

Residuals 6 829.87 138.31

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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2.9 Multiple responses

The lhs of a formula may reference a matrix in the calling environment, and lm() will pro-
duce an analysis for each column as a response variable. aov() will produce a multivariate
analysis. Both lmp() and aovp() produce analyses for each column as the response vari-
able. Many datasets contain variables for both the lhs and rhs of the formula, and it is
often convenient to specify the lhs using variables from the argument data. The func-
tion multResp() may be used to do this. The dataset Plasma contains three dependent
variables, and Table 14 shows the analysis.

2.10 Mixture experiments

Continuous variables may represent mixtures, as for example, mixtures of components in
a paint. In these, the variables are constrained to sum to a constant, usually unity. An
example of a design for three mixture components is shown in Table (15).

Because of the constraint, ordinary polynomial models will have redundant terms.
This may be dealt with by appending non-estimable constraints to the design, or by
reformulating polynomial models to account for the constraint. The constraint method
may be useful in the analysis in those cases where it is desired to interpret the coe�cients.
Cox [1971] treats this problem. Cox's results enable models to be build containing both
mixture and non-mixture variables. At the present time neither lmp() nor aovp() support
such constraints. For models containing only mixture variables, one may use models
that have been given by Sche�é [1958], and elaborated upon by Gorman and Hinman
[1962]. The Sche�é models for three variables are shown in Table (16). Note that the
constant term is omitted from these models, which among other things, means that they
are una�ected by block e�ects.

An analysis of the experiment in Table (15) is shown in Table (17). In this case, as
is common for mixture experiments, there is no error in the data, and the analysis is
performed only to create a prediction equation.

2.11 ANOVA types

An ANOVA table summarizes the information about sources in a linear model. Sources
are of course groups of terms, such as the contrasts associated with a factor. For normal
theory, the likelihood ratio test of the null hypothesis that the source is without e�ect is
obtained as the di�erence of two residual sums of squares (SS). For example, the di�erence
in the two SS from the following models.

y = µ+ α+ +ϵ
y = µ+ α+ β +ϵ

If the design is balanced the SS obtained from successively testing all sources add up
to the total SS for a model with the constant as its only term. A balanced design is one in
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Table 14: Multiple response analysis

> data(Plasma)

> anova(lmp(multResp(Amin,Pct,sinpoly)~.,Plasma))

[1] "Settings: unique SS : numeric variables centered"

Analysis of Variance Table

Response: Amin

Df R Sum Sq R Mean Sq Iter Pr(Prob)

W 1 17332 17332 849 0.1060

mTorr 1 47423 47423 5000 0.0144 *

cm 1 393343 393343 5000 <2e-16 ***

sccm 1 2260 2260 120 0.4583

Residuals 6 27379 4563

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Analysis of Variance Table

Response: Pct

Df R Sum Sq R Mean Sq Iter Pr(Prob)

W 1 1.2202 1.2202 453 0.18102

mTorr 1 3.3014 3.3014 1431 0.06569 .

cm 1 3.9105 3.9105 2522 0.03846 *

sccm 1 0.5036 0.5036 122 0.45082

Residuals 6 3.6763 0.6127

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Analysis of Variance Table

Response: sinpoly

Df R Sum Sq R Mean Sq Iter Pr(Prob)

W 1 0.027588 0.027588 5000 0.01920 *

mTorr 1 0.019333 0.019333 1888 0.05032 .

cm 1 0.297234 0.297234 5000 < 2e-16 ***

sccm 1 0.000283 0.000283 51 0.90196

Residuals 6 0.017287 0.002881

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Table 15: ghoctane: An octane-blending experiment

> data(ghoctane)

X1 X2 X3 ON

1 1.000 0.000 0.000 100.8

2 0.000 1.000 0.000 85.2

3 0.000 0.000 1.000 86.0

4 0.500 0.500 0.000 88.8

5 0.500 0.000 0.500 90.3

6 0.000 0.500 0.500 85.5

7 0.333 0.333 0.333 88.3

8 0.150 0.595 0.255 86.6

9 0.300 0.490 0.210 87.6

Table 16: Sche�é models
linear X1 +X2 +X3

quadratic X1 +X2 +X3 +X1X2 +X1X3 +X2X3

special cubic X1 +X2 +X3 +X1X2 +X1X3 +X2X3 +X1X2X3

cubic X1 +X2 +X3 +X1X2 +X1X2 +X2X3+
X1X2(X1 −X2) +X1X3(X1 −X3) +X2X3(X2 −X3)

R models
linear X1+X1+X3 -1

quadratic (X1+X2+X3)^2 -1

special cubic (X1+X2+X3)^3 -1

cubic poly.formula(Y~cubicS(X1,X2,X3) -1)

which the mean centered columns of the incidence matrix for the sources are orthogonal
to each other. If the design is not balanced, the SS do not add up. One can of course
apply ANOVA to any design, balanced or not, but it is seldom appropriate to do this for
severely unbalanced data since the statistical tests will not be independent of the other
sources in the model. A controversy exists about the ordering of sources in the model;
in particular, there are di�erent opinions about whether or not it is appropriate to test
a main e�ect source when its interaction is included in the model. In other words, does
the di�erence in SS for the following models provide an appropriate test? Here ϕ is the
interaction between the other two sources. This problem is discussed in Section 4.2.

y = µ+ α+ +ϕ+ ϵ
y = µ+ α+ β +ϕ+ ϵ

In this section we will discuss an unbalanced dataset and analyze it in two ways.

Table 18 shows an unbalanced dataset reproduced in [Sche�é, 1959, p140]. The data
shows the average weight of litters of rats of four genotypes reared by mothers of four
genotypes. Is it the litter genotype or the mother genotype that matters most?
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Table 17: Octane blending analysis

> anova(lmp(ON~.^3-1,ghoctane))

[1] "Settings: unique SS "

Analysis of Variance Table

Response: ON

Df R Sum Sq R Mean Sq Pr(Exact)

X1 1 10169.7 10169.7 0.05075 .

X2 1 7422.5 7422.5 0.05144 .

X1:X2 1 12.0 12.0 0.05568 .

X3 1 7410.1 7410.1 0.05145 .

X1:X3 1 6.5 6.5 0.06520 .

X2:X3 1 0.0 0.0 0.76062

X1:X2:X3 1 0.9 0.9 0.09946 .

Residuals 2 0.1 0.0

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Table 18: Rat genotype data

Mother
Litter A F I J
A 61.5 55.0 52.5 42.0
A 68.2 42.0 61.8 54.0
A 64.0 60.2 49.5 61.0
A 65.0 52.7 48.2
A 59.7 39.6

F 60.3 50.8 56.5 51.3
F 51.7 64.7 59.0 40.5
F 49.3 61.7 47.2
F 48.0 64.0 53.0
F 62.0

I 37.0 56.3 39.7 50.0
I 36.3 69.8 46.0 43.8
I 68.0 67.0 61.3 54.5
I 55.3
I 55.7

J 59.0 59.5 45.2 44.8
J 57.4 52.8 57.0 51.5
J 54.0 56.0 61.4 53.0
J 47.0 42.0
J 54.0
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The degree of unbalance in this data is not severe, as may be seen from the following.
The columns of the incidence matrix are not orthogonal because of the unequal number
of observations in the cells.

> data(ratGenotype)

> replications(~litter*mother,ratGenotype)

$litter

litter

A B I J

17 15 14 15

$mother

mother

A B I J

16 14 16 15

$`litter:mother`

mother

litter A B I J

A 5 3 4 5

B 4 5 4 2

I 3 3 5 3

J 4 3 3 5

An analysis of this data is shown in Table 19. This analysis is sequential and tests
each source conditional on the preceding sources in the table. It shows that the rearing
is more important than the litter genotype.

A second analysis is shown in Table 20. This analysis makes unique tests on each
source. That is the SS for each source is conditional on all other sources in the table.
It reports essentially the same results, even though the SS are slightly di�erent. (The
parameter seqs is redundant since aovp() will perform a unique analysis by default.)

There may be a problem with unique tests for certain coding of the sources. Let C
be a contrast matrix for a source, b, and suppose that there is a second factor with three
levels. The columns of the incidence matrix for b will be:

 C
C
C



If the column sums of C are zero, then the cross product of the columns of b and the
second factor will also be zero, and the two factors are said to be orthogonal; the SS for
the two factors will be independent. This happens for a balanced design. If the design is
unbalanced, some of the rows will be missing and the cross product will not be exactly
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Table 19: Sequential Analysis of rat genotype data

> anova(lmp(wt~litter*mother,ratGenotype,seqs=TRUE))

[1] "Settings: sequential SS "

Analysis of Variance Table

Response: wt

Df R Sum Sq R Mean Sq Iter Pr(Prob)

litter 3 60.16 20.052 303 0.7393

mother 3 775.08 258.360 5000 0.0042 **

litter:mother 9 824.07 91.564 2923 0.1187

Residuals 45 2440.82 54.240

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Table 20: Unique Analysis of rat genotype data

> anova(lmp(wt~litter*mother,ratGenotype,seqs=FALSE))

[1] "Settings: unique SS "

Analysis of Variance Table

Response: wt

Df R Sum Sq R Mean Sq Iter Pr(Prob)

litter 3 27.66 9.219 66 1.0000

mother 3 671.74 223.913 5000 0.0038 **

litter:mother 9 824.07 91.564 2503 0.1674

Residuals 45 2440.82 54.240

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Table 21: Unique Analysis of rat genotype data using a contrast with non-zero sums.

> anova(lmp(wt~litter*mother,ratGenotype,contrasts=list(mother=contr.treatment(4))))

[1] "Settings: unique SS "

Analysis of Variance Table

Response: wt

Df R Sum Sq R Mean Sq Iter Pr(Prob)

mother2 12 1599.2 133.26 5000 0.0072 **

Residuals 45 2440.8 54.24

---

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

zero. Most of the time the columns sums are near enough to zero, so that this does not
matter. On the other hand, if the column sums of C are quite di�erent from zero, the
departure from orthogonality can be considerable. Since an interaction is the arithmetic
product of two factors, this will cause the interaction to be non-orthogonal to the factors,
and the unique SS will re�ect this because the factors are corrected for the interaction.
Table 21 shows the consequence of using a contr.treatment() contrast, whose columns
do not sum to zero. It should be compared with Table 20. The cross products in the
interaction sum to zero for the mother columns because the litter contrasts sum to zero,
but this does not happen for the litter columns. This changes the SS for litter since
its columns are now dependent on the interaction.

3 Statistical Considerations

3.1 Randomized tests and Permutation tests

It is �rst of all best to be clear about the distinction between randomization tests and
permutation tests. A randomization test uses permutations to obtain p-values and derives
its legitimacy from the design of the experiment where the �information� is built in by
randomizing the allocation of treatments to trials. A permutation test is simply the
permutation part separated from the logical foundation of a randomization. It can be a
valid method of inference but it is not based on randomization assignments of treatments
to trials.

A leisurely exposition on randomization tests is given by Kempthorne and Doer�er
[1969]. In simplest terms, one considers a set of experimental trials involving material
(plots, machines, chemical vials, etc.) and treatments (hot-cold, fertilizer, additive, etc.)
to be applied to the material. One usually attempts to make the material as homogeneous
as possible, but there is a point of diminishing returns in this and so there will always
be some variation in the material. Randomized assignment of treatments to material
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prevents irregularities in the material from lining up with treatment applications, but
this is not the logic for a randomized test. The logic is as follows. Imagine the experiment
at its completion when all the measurements will have been made. Each item will have a
response value. If the treatment had been the waving of a magic wand over some of the
material, one would not expect this to have had any e�ect and the measurements would
be exactly the same as if no wand had been waved over them. If, however, on inspection
a �substantial portion� of those items that had been charmed turned out to have more
extreme measurements than the uncharmed ones, then one would be compelled to concede
that something very strange had happened. Either the wand had indeed had an e�ect,
or the results might have occurred because of some unrecognized factor, such as trickery.
There is no way to be sure. If, however, the charmed items had been selected at random,
these di�culties would disappear, and like it or not, one would have to consider the wand
as a possibility and rush out to repeat the experiment.

Judging the �substantial portion� is done by permuting the observations, which obtains
its legitimacy from the randomization that was used to choose the items to be charmed.
For if the magic wand had no e�ect, as we believed to start, then it can have nothing to
do with the measurements that were made and they would be the same no matter which
items were charmed. It is quite reasonable to ask, then, how the �substantial portion�
observed fares when we examine the observations again and pretend that some other
possible set of items were charmed. Is our �substantial portion� really large, or is it just
largish. The only way to �nd out is to consider all the random allocations that might
have been and to calculate the results using the observed data. Thus one permutes the
data, calculates statistics, and tallies how many randomizations would have produced
values as large or larger than that which was observed. The resulting tally divided by the
total number of possible permutations is the p-value, a quite legitimate probability, and
as good a measure of evidence as can be found. This probability assesses the information
that was built into the experiment during its design by the use of a random mechanism.

On the other hand, a permutation test does not involve randomization of the material.
If it is not simply a calculational exercise, it must be judged by other means; one of which is
the selection of material and treatments from some population. If one has two populations,
one of witches and one of muggles (about as realistic a pair of populations as many that
are booted about), and if one selects a sample from each and sets them a task, then one
may judge the e�cacy of the these populations in performing this task with the aid of a
permutation test. The null hypothesis is that witches don't exist, and those who claim to
be are no more capable of producing charms than are muggles. Say the task is to curdle
cream, One might pour bowls of cream for all participants, allow the witches to do their
thing, and at some agreed upon time inspect the bowls for curdling. If upon examining
the permutation p-value one found it exceeding the 5% level for the witches then the null
would be rejected; but this p-value would depend for its validity on the random selection
of individuals from the populations which stands in for the randomization of treatments
used in a randomization test.
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3.2 Comparing permutation and standard tests

There is no question about the use of permutation and randomization tests for paired
samples or even for two samples, for surely these were the things used in the earliest
discussions of permutation and randomization tests. Fisher's �rst example (Fisher [1935]
used some data of Charles Darwin to illustrate his ideas and the data was in the form
of matched pairs. This sort of experiment has been repeated many times and forms a
staple in textbooks describing randomized tests. The fact that Darwin probably did not
randomize his data is of no importance (an objection raised by some) because Fisher
said �On the hypothesis that the two series of seeds are random samples from identical
populations, and that their sites have been assigned to members of each pair independently
at random . . .�: [Fisher, 1935, p44]. Fisher was illustrating a method and not performing
an analysis with respect to the subject matter.

For more complicated designs, however, it is possible to randomize in di�erent ways,
and since the elements that one may exchange in a randomization (permutation) test are
determined by the randomization it is possible to calculate slightly di�erent p-values in
di�erent ways. [Edgington, 1995, p133] is adamant about the need to randomize among
levels of one factor for each set of levels of the other factors: thus for a two-way table
with factors A and B, he performs a randomization of A for each of the levels of B. This
very conservative approach makes the treatment of multi-way tables or blocking factors
di�cult, and pretty nearly eliminates any methodologies for unbalanced designs.

[Manly, 1998, p130] has studied this problem and presents simulations which indicate
that there is little to choose between several methods for main e�ects when power is con-
sidered. In particular, the simulation power values are about the same when Edgington's
rules are used as when all observations are randomized. Randomization over all values is
of course the easier method. In addition, Manly's simulations show that randomization
over the residuals is a viable alternative: i.e., for a two-way table with data values xijk,
where i and j index the two variables, and k is the replication index, the residuals are
rijk = xijk−xi..−x.j.+x..., where dots indicate averaging; thus randomizing the residuals
makes the test conditional on the observed marginal means.

This can be carried further by considering the projection of the observations into
subspaces, as is done with aov() for error subspaces. The aov() function �ts the model
described in the Error part of the formula and uses the Q matrix of the qr decomposition
to project both the response and the model into orthogonal subspaces in which the other
terms in the formula are �t. Thus if Error describes a block variable, then the formula
terms are �t to data orthogonal to blocks, which amounts to correcting the data within
each block for the block mean. The residuals described in the previous paragraph are
dependent since they must sum to zero, and it might be argued that one might well
consider permuting all but one of them. On the other hand, the orthogonal projection for
Error describing a block reduces the number of elements by one in each block, and the
permutation for all blocks involves only number of observations minus number of blocks.

In addition, the test statistic makes a di�erence. For analysis of variance the sum of
squares, SS, for an e�ect is a natural choice, but analyses based on this statistic are not
as powerful as those based on a sum of squares scaled by the residual sum of squares. The
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reason is that when e�ects are present the overall level of the data changes, in�ating the
SS and making them dependent on this level. The e�ects of this are illustrated in Table
23. The functions lmp() and aovp() use the scaled SS by default.

The functions lmp() and aovp() are modi�cations of the R functions lm() and aov()
that permute the projected response values and output the resulting p-values in place of
normal theory values. The e�cacy of this may be judged by contrasting the two. [Manly,
1998, p130] has done this for a number of procedures. A portion of his Table 7.6, �lled
out with simulations using lmp() and aovp(), is shown in Table 23.

Manly used a 24 observation data set involving two variables in a 4x2 design with 3
replicate observations per cell as shown in Table 22. He randomized the response 1000
times and applied each of the procedures to the resulting data. He tabulated the number
of times each analysis produced a signi�cant p-value at the 5% level � an estimate of the
power of the test against the alternative hypothesis. Eight alternative hypotheses were
generated by adding values to the main e�ects and interactions: these are indicated by
the columns v1,v2,v3 in Table 22. The row labels of Table 23 indicate the v columns
added to a randomization of the response values; the hi values are obtained by doubling
the v values8. The �S� columns refer to tests based on SS, while the �F� columns refer to
SS scaled by the residual SS.

The �F-distribution� columns represent the usual F-test values. The �lmp()" and
�aovp()" columns were obtained by using these functions. The �aovp()� analysis had a
block variable included to create two strata with perhaps di�erent errors.

As may be seen from this table, there is little to choose between permutation tests
and F-tests, even when the permutation tests are based on projections for blocking. The
di�culties expressed by [Edgington, 1995, p133] do not seem to be of practical importance.
The loss of power when unscaled SS are used should be noted.

3.3 Outliers and non-normal data

Linear models assuming normality are fairly insensitive to violation of the assumptions
when the sample sizes are large. For small samples with few degrees of freedom for
error, the size and power of the tests is degraded. Table 24 shows what happens when
the data follows a gamma distribution. The values in this table were obtained from
1000 simulations for a 10 observation dataset comprising a single factor at two levels,
drawing �ve observations from the null distribution with a shape parameter, α, of 0.5,
and �ve observations from several alternatives with shape parameters varying from 0.01
to 1.00. The p-values and powers with respect to a 5% tests, are averaged over the 1000
simulations. The calculation assuming normal errors is clearly less satisfactory than the
permutation calculation.

Unequal variances e�ect both normal-theory and permutation tests about the same, as
may be seen in Table 25. This table was obtained from 1000 simulations for 10 observations
with powers calculated for a 5% test.

8Manly's added values were designed to produce e�ects in each of the three spaces independently, but
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Table 22: Data used by [Manly, 1998, p126] for power calculaitons

month sex Y v1 v2 v3

1 June Male 13 100 0 0

2 June Male 242 100 0 0

3 June Male 105 100 0 0

4 June Female 182 100 300 0

5 June Female 21 100 300 0

6 June Female 7 100 300 0

7 July Male 8 200 0 0

8 July Male 59 200 0 0

9 July Male 20 200 0 0

10 July Female 24 200 300 0

11 July Female 312 200 300 0

12 July Female 68 200 300 0

13 August Male 515 300 0 0

14 August Male 488 300 0 0

15 August Male 88 300 0 0

16 August Female 460 300 300 300

17 August Female 1223 300 300 300

18 August Female 990 300 300 300

19 September Male 18 0 0 0

20 September Male 44 0 0 0

21 September Male 21 0 0 0

22 September Female 140 0 300 300

23 September Female 40 0 300 300

24 September Female 27 0 300 300

unfortunately the additions to the interaction space are not orthogonal to the other spaces.
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Table 23: Power simulations, after [Manly, 1998, p130]. p-values outside the range 3.6%
to 6.4%, when true value is 5% are boldfaced.

Unscaled SS Scaled SS

lmp() F-distribution lmp() aovp()

E�ects S1 S2 S12 F1 F2 F12 F1 F2 F12 F1 F2 F12

1 None 5 7 5 4 5 5 5 5 6 5 5 5

2 Lo 1 23 4 3 20 5 5 24 6 7 30 5 5

3 Hi 1 75 1 1 71 4 4 71 5 4 90 6 5

4 Lo 2 2 57 2 4 56 4 4 58 5 5 74 5

5 Hi 2 0 100 0 5 100 4 4 100 4 4 100 5

6 Lo 1,2 16 55 1 21 53 4 20 56 5 33 63 5

7 Hi 1,2 30 99 0 73 100 3 70 100 4 90 100 6

8 Lo 1,2,12 10 86 2 51 90 11 29 89 10 42 97 16

9 Hi 1,2,12 12 100 0 100 100 32 91 100 34 99 100 53

Table 24: Power simulations when the data follows a gamma distribution

αnull αalt F p-val Perm p-val F power Perm power
0.5 0.01 0.11 0.03 0.32 0.91
0.5 0.05 0.17 0.12 0.24 0.63
0.5 0.10 0.24 0.21 0.18 0.42
0.5 0.50 0.47 0.51 0.02 0.05
0.5 1.00 0.37 0.38 0.11 0.16

Table 25: Power simulations when the variances are unequal

µnull σnull µalt σalt F p-val Perm p-val F power Perm power
0 1 1.3 1 0.16 0.17 0.42 0.40
0 1 1.3 4 0.43 0.45 0.12 0.12
0 1 1.3 8 0.47 0.50 0.08 0.10
0 1 1.3 16 0.49 0.51 0.07 0.10
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The exclusion of outliers is a vexed question for which there seems to be no general
answer. In addition to the problems of choosing criteria for excluding obviously extreme
values, there seem to be situations in which outliers become apparent only in multivariate
situations, [Barnett and Lewis, 1978, p245]. Table 26 shows a power comparison for a
mixture of normal distributions; the alternative distribution is a mixture of a N(0, 1.3)
distribution and with 10% outliers at the values given. The simulations are for 10 obser-
vations averaged over 1000 repetitions and the power is for a 5% test. As may be seen,
modest outliers have little e�ect on either method, but larger outliers e�ect permutation
calculations less than normal theory calculations.

Table 26: Power simulations when there are outliers

µnull µalt µout F p-val Perm p-val F power Perm power
0 0 0 0.50 0.50 0.06 0.05
0 1.3 1 0.18 0.19 0.40 0.38
0 1.3 2 0.13 0.14 0.50 0.49
0 1.3 5 0.11 0.11 0.44 0.53
0 1.3 10 0.16 0.11 0.07 0.53

4 Technical Details

4.1 Permutations

Since permutations are computer intensive calculations, only the fastest algorithms should
be used. To the best of my knowledge, the minimal e�ort general purpose permutation
algorithm is pair exchange; that is successive item pairs are exchanged in a pattern that
traverses all possible permutations. Of course special purpose routines can be written
that take advantage of special characteristics of the data: see Baker [1995] for a survey of
methodologies.

The idea employed here is to observe that if one has a set of permutations of n-1 ele-
ments which have been generated with minimal exchanges, then the set of n permutations
obtained by adding a new element at each possible position is also a minimal exchange
set, since each new permutation involves only a pairwise exchange of the new element
with one of the old elements. The permutation {1,2,3} thus generates the permutations
{1,2,3,4}, {1,2,4,3},{1,4,2,3},{4,1,2,3}, each requiring only one pair exchange. A scheme
for doing the bookkeeping in this was given by Reingold et al. [1977]. This scheme is
embodied in the c code permute.c, and made available in the R package through the R
function permute(). A call to permute() produces a list containing pair indexes to be
swapped. Using these indexes successively will traverse the possible permutations of a set
of elements one pair-swap at a time.

The fact that all possible permutations are traversed by pairwise exchanges enables
the fast generation of statistics calculated from permutations when the statistics are such
that they may be updated by calculations involving only the exchanged elements. This is
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the case when sums of squares are used:all that is involved is the backing out from the sum
of squares the contributions from the two pairs, and the addition back in of the switched
calculations. Since all permutations are generated, the distribution of the statistic is well
calculated.

Pairwise exchanges are also used when the p-values are estimated by randomly sam-
pling from all permutations. Of necessity, the �rst few permutations generated in this
fashion are similar to the starting one, which raises the question of the representativeness
of the sampling. Simulations indicate that starting pairwise permutations from the ob-
served values is indeed a bad idea. The convergence to the correct value is very slow. One
idea is to perform a complete randomization every so often, and indeed this works, but
simply doing a complete randomization at the start seems to be just as good. Simula-
tions show that the di�erence between randomizing every time, and randomizing once at
the start and then using pair exchange, produce equally good estimates of the p-values.
Besag and Cli�ord [1989] have studied this problem and provide justi�cation for the pro-
cedure adopted here. The cautious user can control the randomization with the nCycle

parameter.

4.2 Linear functionals

The usual statistics for linear models are derived from linear functionals of the observa-
tions; that is if y is the vector of observations, then all of the usual statistics are of the
form v′y for some vector v which does not depend on the observations. If Ey = Xβ,
and if QR = X, where Q′Q = I, is the qr decomposition of X, then the least squares
estimates of the coe�cients are β̂ = R−1Q′y which are linear functionals of y. If the
observations are uncorrelated with unit variances, then the covariance matrix of the least
squares estimates is (R′R)−1 The squares of the elements of the vector Q′y are the sums of
squares for the individual coe�cients � the squares of linear functionals. If Qb is a matrix
of the columns of Q corresponding to a source, then the sum of squares for this source
is given by summing the elements of (Q′

by)
2: in other words by summing the squares of

linear functionals of the y's. This is in fact the methodology used in the LINPACK and
LAPACK routines called by lm() and aov() in R.

This methodology produces a sequential breakdown of the sums of squares, as pointed
out in the anova.lm() writeup, in which the sum of squares for each source is dependent
on sum of squares for the preceding sources. SAS calls this Type I ANOVA. There is no
problem if the sources are orthogonal, since then the sums of squares are una�ected by
the ordering; nor is there a problem when all sources are single degree of freedom sources,
as are regression coe�cients, since again the source ordering does not a�ect the sums of
squares. The di�culty occurs for non-orthogonal (unbalanced) designs where the sources
have more than one degree of freedom. In this case the order of the sources becomes
important, since earlier sources constrain later sources.

There is no agreement on how to deal with this problem. One can formulate hypothe-
ses about sources individually, which is usually acceptable if the sources are all main
e�ects but di�culties clearly arise for interactions: should one test main e�ects when the
interaction is signi�cant? There is a considerable literature on the subject.
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Part of the problem is due to a data mining mentality in which terms are added and
subtracted to the model in the hope of achieving some goal. The fact that this invalidates
the statistical tests seems to be overlooked even by those who should know better. For
example it has been suggested that one ought to routinely omit high level terms unless
they are signi�cant9.

ANOVA is most appropriately used for designed experiments, and for such experiments
the model must be supplied in advance of the data collection � there is no room to �ddle
with it after the fact. A computer program should provide signi�cance tests for all sources.
It is up to the experimenter to decide whether or not they are relevant.

A signi�cant interaction means that there is a signi�cant contrast in the interaction
space, and almost always implies that the marginal sources are irrelevant. Sometimes this
contrast is of little interest; for example, it might be due to a single anomalous cell which
can be explained away. One should look at the interaction means to make a decision. On
the other hand, a non-signi�cant interaction means that the marginal sources are indeed
of interest, and their statistical tests relevant.

The likelihood ratio test under normal theory is a test of two hypotheses, one involving
a source and one not involving the source. The calculations that lead to the test statistic
are made by placing the source of interest at the end of the model, which means that
the source is conditional on the other sources. In common parlance it is �corrected� for
all other sources, which seems wrong to many users, especially when main e�ects are
�corrected� for interactions. The fact that single degree of freedom sources (regression
coe�cients) are tested by the same rubric is commonly ignored. This �correction� aspect
is however an artifact of the calculation procedure and not the raison d'être of the test,
which rather is a test of a hypothesis.

If one wants to test a main e�ect in a model with an interaction, and if one wants to
use a likelihood ratio test, then the test is the test as stated, and it is equivalent to writing
the model with the source as the last source. That this involves placing the interaction
before the main e�ect, is quite irrelevant, since the test is the test is the test. lmPerm

provides a �unique� test for all sources. How they are interpreted is a matter for the user,
not the program.

For example Table 28 shows an analysis of Tab1 in Table 27. There is a non-signi�cant
interaction, but a signi�cant main e�ect. Clearly the main e�ect is of interest and infor-
mative. Had the interaction been signi�cant, however as is shown in Table 29 for Tab2,
the main e�ect might be of less interest, although it clearly indicates that the �rst row
in the table contains larger values on the average than the second. The statistical test
might be ignored in this case. Part of the controversy has to do with the display of such
information: the fear is that it will be misused by occasional statistical users. The fear
is real, but twisting oneself into knots to avoid the problem doesn't seem to make sense.
It might be better to abandon the traditional and very useful ANOVA table in favor of
some display that shows the user Tab2, which makes the relationship very clear.

The technique used by lmPerm may be described by considering the model y = Xβ+ϵ,

9Although this is impropper, one might implement some sort of regret criteria that would allow for

data snooping.
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Table 27: Two way tables

Tab1 B1 B2 B3 B.
A1 4.18 3.51 3.64 3.78
A2 0.74 0.59 0.58 0.64
A. 2.46 2.05 2.11

Tab2 B1 B2 B3 B.
A1 4.18 3.51 0.62 2.77
A2 0.74 0.59 0.58 0.64
A. 2.46 2.05 0.6

Table 28: Analysis of Tab1

Tab1 Df R Sum Sq R Mean Sq Iter Pr(Prob)

A 1 10.6 10.6 5000.0 0.0188 *

B 1 0.5 0.5 51.0 0.8235

A:B 1 0.1 0.1 51.0 0.6863

Residuals 23 2.9 0.1

where X is the incidence matrix of the design, β a vector of unknown parameters and
ϵ a diagonal matrix of uncorrelated N(0,1) errors. The likelihood ratio test for source b
(corresponding to a subset of the elements of β) contrasts the residuals from two models:
H0: model without source b; H1: model with source b. The di�erence in the residual
sums of squares SSb = SS0 − SS1 is used as the test statistic: under normal theory it is
distributed as a multiple of a chi-squared variable. This di�erence is a quadratic function
involving the inverse, V −1

b , of that part of the covariance matrix under H1 corresponding

to the source b: it is shown in the Appendix that SSb = β̂T
b V

−1
b β̂b, where β̂b is that portion

of the coe�cient vector under H1 corresponding to b.

Permutation p-values are obtained from the sums of squares SSbi = β̂T
biV β̂bi : i =

1 . . . N where β̂bi is obtained from the ith permutation of the y vector. If SSb0 is the
sum of squares from the original ordering of the elements of y, then the p-values are
given by P = (

∑
(SSbi/SSri > SSb0/SSr0))/N , where SSri and SSr0 are residual sums of

squares. If N is the total number of permutations possible, then the p-values are exact,
otherwise they are estimates: of course the scaling by the residual sums of squares is
omitted for saturated models. Statistics other than sums of squares have merit, but are
not implemented in these functions. It should be noted that scaling the sums of squares
increases the power of the test: see Manly [1998].

Table 29: Analysis of Tab2

Tab2 Df R Sum Sq R Mean Sq Iter Pr(Prob)

A 1 26.2 26.2 5000.0 0.0004 ***

B 1 13.9 13.9 5000.0 0.0032 **

A:B 1 11.5 11.5 5000.0 0.0118 *

Residuals 23 5.2 0.2
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5 Derivation of SSb = β̂T
b V

−1β̂b

5.1 Non-singular XTX

Consider a partitioned incidence matrix X = (X1, X2), and two hypotheses:

H1 : y ∼ N(Xβ1, σ
2I)

H2 : y ∼ N(X1β2, σ
2I),

with least squares estimates:

y1 = X1β̂a +X2β̂b

and y2 = X1β̂2.

The two least squares minimums are given by

Lb = (y − y1)
T (y − y1) = yTy − yT1 y1

La = (y − y2)
T (y − y2) = yTy − yT2 y2,

and the sum of squares of interest is

SSb = La − Lb = yT1 y1 − yT2 y2.

We will transform X so that yT1 y1 is the sum of two parts, one of which is yT2 y2, and
the other the desired quadratic function of β̂b.

Transform X into an orthogonal matrix Z by Z = XT , where

T =

(
Ta ∗
0 Tb

)
T−1 =

(
T−1
a ∗

0 T−1
b

)
,

and the asterisks denote matrices of no interest.

Now
I = ZTZ = T TXTXT, (1)

so that

(XTX)−1 = TT T =

(
∗ ∗
∗ TbT

T
b

)
=

(
∗ ∗
∗ V

)
,

and σ2V = Cov(β̂b).

Applying the transformation gives

y1 = Xβ̂1 = XTT−1β̂1 = Zγ̂1 = Z1γ̂a + Z2γ̂b
= ya + yb,
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and because ZT
1 Z2 = 0, γ̂1 and γ̂2 are estimated independently, so

Z1γ̂a = X1Taγ̂a = X1TaT
−1
a β̂2 = X1β̂2 = y2.

Since
yTa yb = γT

a Z
T
1 Z2γb = 0,

one has

yT1 y1 = yTa ya + yTb yb.

It follows that

SSb = yT1 y1 − yT2 y2 = yTa ya + yTb yb − yT2 y2 = yTb yb
= γ̂T

b Z
T
2 Z2γ̂b = γ̂T

b γ̂b = β̂T
b (T

−1
b )TT−1

b β̂b

= β̂T
b (TbT

T
b )

−1β̂b

= β̂T
b V

−1β̂b.

5.2 Singular XTX

The proof goes thru for singular XTX by choosing Ta, Tb such that instead of equation
(1) one has D− = ZTZ, where D is diagonal with elements 0 and 1. Then TDT T is a G
inverse of XTX and TbD2T

T
b = V with V − = (T T

b )
−1D−T−1

b , hence SSb = βT
b V

−βb where
βb is the least squares estimate obatined by using TDT T .
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